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A numerical method is proposed for optimization of the spatial placement of a i 
fixed number of temperature sensors in the solution of coefficient-type inverse 
heat-conduction problems. 

A large class of promising methods for the analysis and interpretation of data from 
transient thermophysical experiments is based on the solution of coefficient-type inverse 
heat-conductlon problems [I, 2]. In this approach the coefficients (thermophysical charac- 
teristics) in the heat-conduction equation are determined from the known boundary and initial 
conditions and from the data of transient temperature measurements at a finite number of spa- 
tially distributed points of the analyzed body. It is assumed that the heat-conduction equa- 
tion describes the investigated heat-transfer process with sufficient accuracy and that the 
coefficients of the equation are equivalent in the general case to certain "effective" thermo- 
physical characteristics of the real material. 

We consider the quasilinear heat-conduction boundary-value problem with Dirichlet and 
Neumann boundary conditions: 
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where ? (x), g1(x), g, (3, ql (x), q2 (T) are known functions. 

Depending on the a priori information about the characteristics C(T) and %(T), coeffi- 
cient-type inverse heat-conduction (IHC) problems can be stated in different ways, namely: to 
determine either of the characteristics or both of them simultaneously. The input data for 
the solution of IHC problems are provided by measurements of the temperature at one or more 
points of the investigated sample: 

T(Xi ,  ~)= f~(~), i =  1, 2 . . . . .  N. (5)  

The usual criterion for the selection of the unknown characteristics is the mean-square 
deviation of the temperature values calculated by means of the mathematical model (1)-(4) at 
the sensor placement sites from the experimentally measured values: 

g ~ 

I : ~ ,  1" [ r  (X,, T) - -  ~i (,~)]2 d'~. 
i = l  0 

(6) 

It must be emphasized that the minimum required number of temperature sensors and the 
possible region of their placement are completely determined by an analysis of the conditions 
for the existence and uniqueness of a solution of the corresponding inverse problem. For ex- 
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ample, the results of [3] indicate that in order to determine either of the functions C(T) 
or %(T) unambiguously from conditions (1)-(6) it is necessary to perform a transient measure- 
ment of the temperature at one point. This point must be situated in the interior of the in- 
vestigated spatial region under specified Dirichlet boundary conditions or it can be situa- 
ted on one of the boundaries under a Neumann-type boundary condition. However, if the prob- 
lem of identifying both characteristics is analyzed, a unique solution of such an IHT problem 
is provided by measuring the temperature at two different points and specifying a Neumann 
boundary condition on at least one of the boundaries, in which case the heat flux must be non- 
vanishing. Requirements of this type on the measurements dictate the minimum possible experi- 
mental information that is required in principle for the solution of a specific inverse prob- 
lem. If a greater number of measurements is performed, the problem becomes overdetermined. 

Effective iterative regularizing algorithms for the solution of coefficient-type IHT 
problems can be formulated on the basis of gradient methods for the minimization of the cri- 
terion (6) with parametrization of the unknown functions in the form 

( 7 )  P ( T ) =  ~__] ph~n(T), 

where P(T) is the sought-after characteristic and ~h(T) , k=l, 2, ..., m, is a system of basis 
functions, in the role of which it is convenient to use cubic B-splines [4]. 

In this case the inverse problem is reduced to the determination of the vector of param- 
eters P = {Pk, k = i, 2, ..., M}, the composition of which includes the coefficients of the 
parametric representation of all the characteristics to be determined in the problem. The 
most efficient way to compute the components of the gradient of the functional (6) from the 
unknown parameters is to use the solution of the dual boundary-value problem corresponding to 
the primary problem. Algorithms of the given type have been proposed in [5-8]. Some results 
pertaining to the substantiation of the regularizing properties of the interative algorithms 
are presented in [8, 9]. 

Mathematical modeling data [i0] show that the error of determination of the thermophysi- 
cal characteristics from the solution of the IHT problem may depend significantly on the spa- 
tial placement of the temperature sensors in the investigated body. The proper setup of the 
thermophysical experiment requires the solution of an optimum experimental design problem, 
viz.; to place a fixed number of sensors in the sample in such a way as to minimize the error 
of identification of the required characteristics. The stated problem can be solved on the 
basis of the fundamental principles of experimental design theory for distributed-parameter 
systems (see, e.g., [II, 12]). 

We consider the experimental design problem for measurements performed in order to de- 
termine the two characteristics C(T) and %(T) from conditions (1)-(6) in the presence of ex- 
cess experimental information (N > 2). This approach can be used to analyze other important 
practical situations as special cases. 

Using the parametrization of the sought-after functions 

(8) C (T) = ~ C k ~ h ( T ) ,  ~,(T) = ~ ~,kq~:~(T), 
h =  1 h = r r q ~  t 

we f o r m  t h e  v e c t o r  o f  u n k n o w n  p a r a m e t e r s  P - -  {Ph, k = 1, 2, . . .  , M } , w h e r e  p~ - -  Ch, k = 1, 2, . . . .  
ml; p ; , = % ~ ,  k = m ~ - /  i ,  m I T 2  . . . . .  M = n  h + m ~ .  

Next we introduce a measurement design in the form of a vector of space coordinates of 
the placement points of the temperature sensors: 

X : :  {X~, i =  1, 2 . . . .  , N}. ( 9 )  

The error of determination of the vector P from the solution of the inverse problem (1)-(6) 
is related continuous]y to the normalized Fisher information matrix [II, 12] 

1 { * k  J, k, ] = 1  2, . .  iv/}, F (X) = - ~ -  , � 9  (I0) 
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where 

X im q~,t = ~ Oh (Xi, T) Oj (Xl, ~) dr ;  
i ~ l  0 

0k(Xi, T) are the sensitivity function computed at the sensor placement points: 0k(Xi, T) = 
OT(Xi, ~)lOpk, k = 1, 2 . . . . .  M. 

To obtain the relations governing the sensitivity functions we differentiate Eqs. (i)- 
(4) ml times with respect to C k, k = I, 2, ..., ma, and m2 times with respect to lk, k = 
m~ + I, m~ + 2, ..., M. Then, making use of Eq. (8), after suitable transformations we ob- 
tain 
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0 h(0, ~ ) = 0  or E(T(0, T)) 00k(0, ~) +Qk(0 ,  ~)0h(0, z ) + R ~ ( 0 ,  T)---0, 
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To contrast with the primary problem (1)-(4), the boundary-value problems for the sensi- 
tivity functions are linear. For their solution it is required to know the temperature field 
T(x, T) in the investigated sample. 

The information matrix (i0) characterizes the total sensitivity of the analyzed system 
in the entire set of measurement points to the variation all components of the vector of un- 
known parameters. The given optimum measurement design problem entails finding a design X 
for which the total sensitivity of the system in the adopted sense will be a maximum. 

Various criteria are used for the optimization of the experimental conditions. The so- 
called D-optimum design [ii, 12] is widely used to ensure the minimum error of estimation of 
the unknown parameters. In this case the measurement design can be determined from the con- 
dition of the maximum of the determinant of the normalized information matrix: 

D* = max [det F (X)]. (15) 
X 

We note that the components of the vector X in the given probiem must satisfy the con- 
straints 

0 < X ~ < b ,  i = 1, 2 . . . . .  N ,  (16) 

when Dirichlet-type boundary conditions are specified in the IHT problem, and 

O ~ X i ~ b ,  i =  1, 2 . . . . .  N, (17) 

when Neumann- type  boundary  c o n d i t i o n s  a re  known. 
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Fig. i. Optimum placement (X, 
mm) of a temperature sensor for 
the determination of the ther- 
mal conductivity coefficient. I) 
M = 3; 2) 4; 3) 5. 

It must be emphasized that the elements of the normalized information matrix F(X) [see 
relations (ii)-(14)] and, hence, the measurement design X depend on the vector of unknown pa- 
rameters P. This situation is attributable to the strongly nonlinear dependence of the tem- 
perature on the unknown parameters and is typical of measurement designs for the solution of 
inverse problems in mathematical physics. Accordingly, it is only meaningful to speak of lo- 
cally optimum designs, which are formulated with the use of a priori information about the un- 
known parameters [II]. 

The above-described measurement-design method is implemented in the form of a computa- 
tional algorithm and computer program. The corresponding boundary-value problems are solved 
numerically with the application of a monotonic approximation scheme [13]. The system of dif- 
ference equations is solved by the double-sweep (modified Gaussian elimination) method. In 
the nonlinear case, iterations are carried otu with respect to the coefficients. After the 
elements of the normalized information matrix have been calculated, the conditional optimiza- 
tion problem (15), (16) or (15), (17) is solved. The following reasonably simple computa- 
tional algorithm of direct sequential search for an optimum measurement design on a fixed dif- 
ferencing grid with respect to the space coordinate is used here. All N temperature sensors 
are placed at the first node. Then the N-th sensor "runs through" all nodes of the grid, and 
the value of det F(X) is computed at each of them. Next, the (N -- l)-st and N-th sensors are 
placed at the second node, and the others are left at the first node. The N-th sensor again 
"runs through" all nodes of the grid, but now beginning with the second node. The process is 
continued until the two sensors indexed N and N -- 1 are located at the last node. After this, 
the (N-- 2)-nd, (N -- l)-st, and N-th sensors are placed at the second node of the grid, and 
the computations are repeated. The sequential search process is terminated when all N sen- 
sors are located at the last node of the differencing grid. The proposed algorithm can be 
used to compute the optimum placement of sensors within error limits corresponding to half 
the step of the space grid. 

Methodological control examples have been calculated with the application of the method 
developed here. Some results are given in Fig. i. 

The following mathematical modeling procedure is used. ale inverse problem of determin- 
ing the thermal conductivity coefficient under Dirichlet boundary conditions is solved for a 
sample in the form of an unbounded plate with a thickness of 8 mm. The function %(T) = 0.5 
[i + (T/1000) 2] is specified a priori. The temperature field is calculated with Neumann 
boundary conditions for values of the heat flux at the boundaries gx(~) = 1.5"105 and g=(T) = 
0. The remaining initial data are taken eq,al to C(T) = 4.0"106 , T m = 60, y(x) = 0. It is 
assumed here that the readings of a single temperature sensor are used in solving the IHT 
problem, and the number M of zones in the spline approximation of the function %(T) is varied. 

The results demonstrate the existence of a fairly limited spatial region in which the 
temperature sensors must be placed. This region is further restricted with an increase in 
the number M. 
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It is important to note that the possibility of formulating only locally optimum measure- 
ment designs in coefficient-type IHT problems indicates the iterative nature of the experi- 
mental design and characteristic-identification process. The general sequence of operations 
must be as follows. An initial approximation of the unknown vector P is specified on the bas- 
is of a priori information. Next, the sufficient number of temperature sensors for the unique 
solution of the inverse problem is determined, along with their optimum placement with respect 
to the space coordinate. Then the real experiment and measurements must be carriedout. The 
experimental data are processed by the methods of coefficient-type IHT problems, and a new 
approximation of the vector of unknown parameters is determined. This approximation is used 
as the initial (a priori) information for the next iteration in the general characteristic- 
identification procedure. The successive-approximation process must be continued until the 
results in two successive iterations coincide within prescribed error limits. 

We note that the rate of convergence of the iterative identification process described 
here can be increased by means of a more detailed experimental design. The detailed refine- 
ment consists in analyzing the a priori information about the unknown parameters in the form 
of a certain set of values: Pmin~P~.Pmax �9 A certain average measurement design can be ob- 
tained on the basis of such an analysis and used in the next iteration. 

NOTATION 

T, temperature; x, space coordinate; T, time; C(T), volume specific heat; %(T), thermal 
conductivity; b, sample thickness; y(x), initial temperature distribution; g,(r), 'q,(T), g2- 
(T), q2(Y), thermal regime at boundaries; X, coordinate of temperature sensor placement; N, 
number of sensors; f(r), experimentally measured temperatures; @(x, r), sensitivity function; 
F(X), normalized Fisher information matrix; P = {Pk, k=l, 2, ..., M}, vector of parameters to 
be identified; X = {Xi, i = i, 2 .... , N}, measurement design. 
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